• EI
  • Scopus
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • DOAJ
  • EBSCO
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • JST China
  • FSTA
  • 中国精品科技期刊
  • 中国农林核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020
赵钜阳,方胥伟,顾丽雅,等. 基于网络药理学及分子对接技术研究槐花的抗肥胖作用机制[J]. 华体会体育,2024,45(24):42−49. doi: 10.13386/j.issn1002-0306.2024010100.
引用本文: 赵钜阳,方胥伟,顾丽雅,等. 基于网络药理学及分子对接技术研究槐花的抗肥胖作用机制[J]. 华体会体育,2024,45(24):42−49. doi: 10.13386/j.issn1002-0306.2024010100.
ZHAO Juyang, FANG Xuwei, GU Liya, et al. Anti-obesity Mechanism of Sophora japonica L. through Network Pharmacology and Molecular Docking Technology[J]. Science and Technology of Food Industry, 2024, 45(24): 42−49. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024010100.
Citation: ZHAO Juyang, FANG Xuwei, GU Liya, et al. Anti-obesity Mechanism of Sophora japonica L. through Network Pharmacology and Molecular Docking Technology[J]. Science and Technology of Food Industry, 2024, 45(24): 42−49. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024010100.

基于网络药理学及分子对接技术研究槐花的抗肥胖作用机制

Anti-obesity Mechanism of Sophora japonica L. through Network Pharmacology and Molecular Docking Technology

  • 摘要: 目的:通过网络药理学结合分子对接对槐花作用于肥胖的机制进行了研究和探讨。方法:使用TCMSP平台对槐花活性成分及靶点进行检索,利用Uniprot数据库对靶点进行校对,收集肥胖疾病相关靶点,使用Venny2.1构建槐花靶点和肥胖靶点交集图。通过String12.0对槐花和肥胖交集靶点进行蛋白质相互作用网络分析(PPI),并采用Cytoscape3.7.2绘制槐花-肥胖靶点PPI网络图。在Metascape平台对槐花关键活性成分和肥胖疾病的靶点进行GO及KEGG通路富集分析,使用AutoDockTools1.5.7和PyMOL2.1.1对筛选出的靶点进行分子对接和可视化处理。结果:槐花具有70个能够作用于肥胖疾病的相关靶点,主要活性成分包括槲皮素、山奈酚、异鼠李素、β-谷甾醇,核心靶点涉及AKT1、IL6、PPARG等。GO富集分析显示,槐花活性成分通过对有机氮化合物、对脂质及脂多糖反应等生物过程发挥抗肥胖作用。KEGG通路分析得到脂质和动脉粥样硬化、AGE-RAGE、HIF-1、IL-17等多条信号通路具有抗肥胖作用。分子对接结果表明槐花核心活性成分和对应靶点对接结果良好。结论:本研究表明槐花通过多靶点、多成分、多通路发挥抗肥胖作用,并为进一步研究槐花有效成分和分子作用机制提供理论依据和方法。

     

    Abstract: Objective: The mechanism of action of Sophora japonica L. on obesity was studied and investigated by network pharmacology combined with molecular docking. Methods: The active ingredients and targets of Sophora japonica L. were searched using the TCMSP platform, and the targets were calibrated using the Uniprot database to collect targets related to obesity diseases, and the intersection map of Sophora japonica L. targets and obesity targets was constructed using Venny2.1. Protein-protein interaction (PPI) network analysis was performed on the intersection targets of Sophora japonica L. and obesity by String12.0, and the PPI network map of Sophora japonica L.-obesity targets was drawn using Cytoscape3.7.2. GO and KEGG pathway enrichment analyses of key active components of Sophora japonica L. and obesity disease targets were performed on the Metascape platform, and molecular docking and visualisation of the screened targets were performed using AutoDockTools1.5.7 and PyMOL2.1.1. Results: Sophora japonica L. had 70 relevant targets capable of acting on obesity diseases, and the major active components included quercetin, kaempferol, isorhamnetin, β-sitosterol, and the core targets included AKT1, IL6, PPARG, and so on. GO enrichment analysis showed that the active components of Sophora japonica have anti-obesity effects on biological processes such as organic nitrogen compounds, and the response to lipids and lipopolysaccharides and so on. KEGG pathway analysis revealed the results of lipid and atherosclerosis, AGE-RAGE, and atherosclerosis. sclerosis, AGE-RAGE, HIF-1, IL-17, and many other signalling pathways with anti-obesity effects. The molecular docking results showed that the core active components of Sophora japonica L. and the corresponding targets docked well. Conclusion: The present study demonstrated that Sophora japonica L. exerted its anti-obesity effects through multiple targets, components, and pathways, which would provide a theoretical basis and methodology for further research on the effective components and molecular mechanisms of Sophora japonica L..

     

/

返回文章
返回